Oscillatory Field Genesis – Full Paper Archive

OFGcoreV1: Coexistent Drift-Matter Cosmology

Author: J.D.S. aka Drippy
Date: April 27, 2025

Abstract: OFGcoreV1 unifies inflation, structure formation, and memory drift into a cosmology where \Phi and \Theta fields coevolve with matter. It retains \LambdaCDM successes while addressing voids, filaments, and CMB anomalies through drift dynamics.

1. Introduction

OFG proposes spacetime holds intrinsic memory fields (\Phi, \Theta). Their gradients drive inflation, structure formation, and imprint observable signatures. OFG embraces residual dark matter to form Coexistent Drift-Matter Cosmology (CDC).

2. Core Action and Field Dynamics

The action:

 S = \int d^4x \sqrt{-g} \left( \frac{1}{16\pi} R + \mathcal{L}_{\text{drift}} + \mathcal{L}_{\text{memory}} + \mathcal{L}_{\text{inflation}} + \mathcal{L}_{\text{constraint}} \right) 

With components:

 \mathcal{L}_{\text{drift}} = -\frac{1}{2} g^{\mu\nu} (\nabla_\mu \Phi \nabla_\nu \Phi + \nabla_\mu \Theta \nabla_\nu \Theta) - V(\Phi) 
 \mathcal{L}_{\text{memory}} = -\frac{\lambda}{2} \int d^4x' \sqrt{-g(x')} \frac{\nabla_\mu \Phi(x) \nabla^\mu \Theta(x')}{|x - x'|^2 + \sigma^2} 
 \mathcal{L}_{\text{constraint}} = \xi (\nabla_\mu \Phi \nabla^\mu \Theta - F(\Phi, \Theta)) 

3. Inflationary Dynamics

 V(\Phi) = V_0 \left(1 - e^{-\sqrt{2/3\alpha} \, \Phi / M_{Pl}} \right)^2 
 n_s \approx 1 - \frac{2}{N_e}, \quad r \approx \frac{12\alpha}{N_e^2} 

4. Structure Formation

5. Residual Dark Matter

OFG retains a T^{\text{RDM}}_{\mu\nu} term in Einstein's equations, enabling full explanation of lensing and cluster observations.

6. Predictions

7. Conclusion

OFG proposes a living cosmology where memory and matter coevolve. Future plans include simulations, \sigma and \lambda tuning, and Phase IV unification.

“Memory breathes us into being; drift binds us into the stars.”

FMDSv1: Filament Memory Drift Signatures

Author: J.D.S. aka Drippy
Date: April 27, 2025

Abstract: Filaments under OFG are shaped by memory drift forces. \Phi–\Theta gradients induce phase-locked alignments, enhancing spine coherence and leaving anisotropic lensing signatures potentially detectable in future surveys.

1. Introduction

Memory drift fields affect filament growth by applying anisotropic pressures. Filament alignment and lensing patterns reflect this structured drift influence beyond \LambdaCDM gravity.

2. Drift Dynamics

 \ddot{\delta}_{\text{fil}} + 2H\dot{\delta}_{\text{fil}} = 4\pi G \rho_m \delta_{\text{fil}} + \nabla_\parallel p_{\text{drift}} 
 p^\parallel_{\text{drift}} \sim \lambda \nabla_\parallel \Phi \nabla_\parallel \Theta 
 D_{\text{fil, OFG}}(t) \approx D_{\Lambda\text{CDM}}(t) \left(1 + \frac{2\lambda \epsilon_\Phi \epsilon_\Theta}{15 \delta_0} \right) 

3. Predictions

4. Observational Strategy

5. Conclusion

Drift signatures on filaments offer a clear observational path to validate OFG beyond void behavior.

“Across the silent threads, the memory of creation still hums.”