Oscillatory Field Genesis – Full Paper Archive
OFGcoreV1: Coexistent Drift-Matter Cosmology
Author: J.D.S. aka Drippy
Date: April 27, 2025
Abstract: OFGcoreV1 unifies inflation, structure formation, and memory drift into a cosmology where \Phi and \Theta fields coevolve with matter. It retains \LambdaCDM successes while addressing voids, filaments, and CMB anomalies through drift dynamics.
1. Introduction
OFG proposes spacetime holds intrinsic memory fields (\Phi, \Theta). Their gradients drive inflation, structure formation, and imprint observable signatures. OFG embraces residual dark matter to form Coexistent Drift-Matter Cosmology (CDC).
2. Core Action and Field Dynamics
The action:
S = \int d^4x \sqrt{-g} \left( \frac{1}{16\pi} R + \mathcal{L}_{\text{drift}} + \mathcal{L}_{\text{memory}} + \mathcal{L}_{\text{inflation}} + \mathcal{L}_{\text{constraint}} \right)
With components:
\mathcal{L}_{\text{drift}} = -\frac{1}{2} g^{\mu\nu} (\nabla_\mu \Phi \nabla_\nu \Phi + \nabla_\mu \Theta \nabla_\nu \Theta) - V(\Phi)
\mathcal{L}_{\text{memory}} = -\frac{\lambda}{2} \int d^4x' \sqrt{-g(x')} \frac{\nabla_\mu \Phi(x) \nabla^\mu \Theta(x')}{|x - x'|^2 + \sigma^2}
\mathcal{L}_{\text{constraint}} = \xi (\nabla_\mu \Phi \nabla^\mu \Theta - F(\Phi, \Theta))
3. Inflationary Dynamics
V(\Phi) = V_0 \left(1 - e^{-\sqrt{2/3\alpha} \, \Phi / M_{Pl}} \right)^2
n_s \approx 1 - \frac{2}{N_e}, \quad r \approx \frac{12\alpha}{N_e^2}
4. Structure Formation
- Void distortions (~1%)
- Filament coherence boost
- Unique gravitational lensing patterns
5. Residual Dark Matter
OFG retains a T^{\text{RDM}}_{\mu\nu} term in Einstein's equations, enabling full explanation of lensing and cluster observations.
6. Predictions
- Drift-induced void lensing (Euclid, LSST)
- Filament alignment shifts (DESI, SDSS)
- Anomalous CMB lensing (Simons Observatory, CMB-S4)
7. Conclusion
OFG proposes a living cosmology where memory and matter coevolve. Future plans include simulations, \sigma and \lambda tuning, and Phase IV unification.
“Memory breathes us into being; drift binds us into the stars.”
FMDSv1: Filament Memory Drift Signatures
Author: J.D.S. aka Drippy
Date: April 27, 2025
Abstract: Filaments under OFG are shaped by memory drift forces. \Phi–\Theta gradients induce phase-locked alignments, enhancing spine coherence and leaving anisotropic lensing signatures potentially detectable in future surveys.
1. Introduction
Memory drift fields affect filament growth by applying anisotropic pressures. Filament alignment and lensing patterns reflect this structured drift influence beyond \LambdaCDM gravity.
2. Drift Dynamics
\ddot{\delta}_{\text{fil}} + 2H\dot{\delta}_{\text{fil}} = 4\pi G \rho_m \delta_{\text{fil}} + \nabla_\parallel p_{\text{drift}}
p^\parallel_{\text{drift}} \sim \lambda \nabla_\parallel \Phi \nabla_\parallel \Theta
D_{\text{fil, OFG}}(t) \approx D_{\Lambda\text{CDM}}(t) \left(1 + \frac{2\lambda \epsilon_\Phi \epsilon_\Theta}{15 \delta_0} \right)
3. Predictions
- Filament spine tightening (0.5–1%)
- Shear pattern alignment along filaments
- Lensing convergence \kappa boosts
- Shear anisotropy: \Delta \gamma(\theta) \sim \epsilon_{\text{drift}} \cos(2\theta_{\text{filament}})
4. Observational Strategy
- DESI/SDSS phase map alignment tests
- CMB-S4 stacked filament lensing analysis
- Cross-CMB/filament correlation
5. Conclusion
Drift signatures on filaments offer a clear observational path to validate OFG beyond void behavior.
“Across the silent threads, the memory of creation still hums.”